
Examiners’ Report: Final Honour School
of Mathematics Part B Trinity Term 2019

November 8, 2019

Part I

A. STATISTICS

• Numbers and percentages in each class.

See Table 1.

Numbers Percentages %
2019 (2018) (2017) (2016) (2015) 2019 (2018) (2017) (2016) (2015)

I 59 (58) (51) (56) (48) 39.07 (38.16) (38.63) (39.72) (32.88)
II.1 67 (67) (64) (58) (69) 44.37 (44.08) (48.48) (41.13) (47.26)
II.2 20 (25) (11) (24) (25) 13.25 (16.45) (8.33) (17.02) (17.12)
III 4 (2) (3) (3) (3) 2.65 (1.32) (2.27) (2.13) (2.05)
P 0 (0) (2) (0) (1) 0 (0) (1.52) (0) (0.68)
F 1 (0) (0) (0) (0) 0.66 (0) (0) (0) (0)
Total 151 (152) (132) (141) (146) 100 (100) (100) (100) (100)

Table 1: Numbers and percentages in each class

• Numbers of vivas and effects of vivas on classes of result.

As in previous years there were no vivas conducted for the FHS of
Mathematics Part B.
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• Marking of scripts.

BE Extended Essays, BSP projects, and coursework submitted for the
History of Mathematics course, the Mathematics Education course
and the Undergraduate Ambassadors Scheme, were double marked.

The remaining scripts were all single marked according to a pre-
agreed marking scheme which was strictly adhered to. For details of
the extensive checking process, see Part II, Section A.

• Numbers taking each paper.

See Table 5 on page 13.

B. Changes in examining methods and procedures currently
under discussion or contemplated for the future

None.

C. Notice of examination conventions for candidates

The first Notice to Candidates was issued on 18 February 2019 and the
second notice on 1 May 2019.

All notices and the examination conventions for 2019 are on-line at
http://www.maths.ox.ac.uk/members/students/undergraduate-courses/
examinations-assessments.
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Part II

A. General Comments on the Examination

The examiners would like to convey their grateful thanks for their help
and cooperation to all those who assisted with this year’s examination,
either as assessors or in an administrative capacity. The chairman would
particularly like to thank Gemma Proctor for administering the whole
process with efficiency, and also to thank Nia Roderick, Charlotte Turner-
Smith and Waldemar Schlackow.

In addition the internal examiners would like to express their gratitude to
Professor Schlichting and Professor Branicki for carrying out their duties
as external examiners in a constructive and supportive way during the
year, and for their valuable input at the final examiners’ meetings.

Standard of performance

The standard of performance was broadly in line with recent years. In
setting the USMs, we took note of

• the Examiners’ Report on the 2018 Part B examination, and in par-
ticular recommendations made by last year’s examiners, and the
Examiners’ Report on the 2018 Part A examination, in which the 2019
Part B cohort were awarded their USMs for Part A;

• a document issued by the Mathematics Teaching Committee giving
broad guidelines on the proportion of candidates that might be ex-
pected in each class, based on the class percentages over the last five
years in Mathematics Part B, Mathematics & Statistics Part B, and
across the MPLS Division.

Having said this, as in Table 1 the proportion of first class degrees in Math-
ematics alone awarded (39.07%) was high, and the proportion of II.2 and
below degrees in Mathematics awarded (13.25%) was low, compared to the
guidelines. One reason for this is that the examiners consider candidates in
Mathematics and in Mathematics and Statistics together when determining
USMs, and this year the Mathematics and Statistics candidates performed
poorly compared to the Mathematics candidates, so that the averages for
the two schools combined (27.87% firsts, and 12.57% II.2 and below) are
consistent with the Teaching Committee guidelines.
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Setting and checking of papers and marks processing

Requests to course lecturers to act as assessors, and to act as checkers of the
questions of fellow lecturers, were sent out early in Michaelmas Term, with
instructions and guidance on the setting and checking process, including a
web link to the Examination Conventions. The questions were initially set
by the course lecturer, in almost all cases with the lecturer of another course
involved as checkers before the first drafts of the questions were presented
to the examiners. Most assessors acted properly, but a few failed to meet
the stipulated deadlines (mainly for Michaelmas Term courses) and/or to
follow carefully the instructions provided.

The internal examiners met at the beginning of Hilary Term to consider
those draft papers on Michaelmas Term courses which had been submitted
in time; consideration of the remaining papers had to be deferred. Where
necessary, corrections and any proposed changes were agreed with the
setters. The revised draft papers were then sent to the external examiners.
Feedback from external examiners was given to examiners and to the
relevant assessor for response. The internal examiners at their meeting in
mid Hilary Term considered the external examiners’ comments and the
assessor responses, making further changes as necessary before finalising
the questions. The process was repeated for the Hilary Term courses, but
necessarily with a much tighter schedule.

Camera ready copy of each paper was signed off by the assessor, and then
submitted to the Examination Schools.

Except by special arrangement, examination scripts were delivered to the
Mathematical Institute by the Examination Schools, and markers collected
their scripts from the Mathematical Institute. Marking, marks processing
and checking were carried out according to well-established procedures.
Assessors had a short time period to return the marks on standardised
mark sheets. A check-sum is also carried out to ensure that marks entered
into the database are correctly read and transposed from the mark sheets.

All scripts and completed mark sheets were returned, if not by the agreed
due dates, then at least in time for the script-checking process.

A team of graduate checkers under the supervision of Helen Lowe sorted
all the scripts for each paper for which the Mathematics Part B examiners
have sole responsibility, carefully cross checking against the mark scheme
to spot any unmarked questions or parts of questions, addition errors
or wrongly recorded marks. Also sub-totals for each part were checked
against the mark scheme, noting correct addition. In this way, errors were
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corrected with each change independently verified and signed off by one of
the examiners, who were present throughout the process. A small number
of errors were found, but they were mostly very minor and hardly any
queries had to be referred to the marker for resolution.

Throughout the examination process, candidates are treated anonymously,
identified only by a randomly-assigned candidate number, until after all
decisions on USMs, degree classes, mitigating circumstances notices to
examiners, prizes, and so on, have been finalized.

There were very few errors in the examination papers, and those that did
crop up were minor and were spotted and corrected early in the exams.
The only such issue of real concern was a large font paper which acquired
an additional character in a confusing place. This (quite correctly) led
to a Mitigating Circumstances application from the affected candidate.
In future, assessors should be extremely vigilant in checking large font
versions of their papers, and further thought should be given to how these
are prepared so as to minimise the possibility of such an error recurring.

Standard and style of papers

At the beginning of the year all setters were asked to aim that a I/II.1
borderline candidate should get about 36 marks out of 50, and that a
II.1/II.2 borderline script should get about 25 marks, and emphasising the
problems caused by very high marks.

This year one paper (B1.1, Logic) turned out to be too easy and marks were
heavily bunched at the top end. This may be clearly seen, for example, in
Table 5 and the data following it. This causes problems with rescaling and
the assessor for this course next year should aim to avoid a repeat.

Timetable

Examinations began on Monday 3 June and finished on Saturday 22 June.

Determination of University Standardised Marks

We followed the Department’s established practice in determining the
University standardised marks (USMs) reported to candidates. Papers for
which USMs are directly assigned by the markers or provided by another
board of examiners are excluded from consideration. Calibration uses
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data on the Part A performances of candidates in Mathematics and Mathe-
matics & Statistics (Mathematics & Computer Science and Mathematics &
Philosophy students are excluded at this stage). Working with the data for
this population, numbers N1, N2 and N3 are first computed for each paper:
N1, N2 and N3 are, respectively, the number of candidates taking the paper
who achieved in Part A average USMs in the ranges [69.5, 100], [59.5, 69.5)
and [0, 59.5), respectively.

The algorithm converts raw marks to USMs for each paper separately. For
each paper, the algorithm sets up a map R→ U (R = raw, U = USM) which
is piecewise linear. The graph of the map consists of four line segments:
by default these join the points (100, 100), P1 = (C1, 72), P2 = (C2, 57),
P3 = (C3, 37), and (0, 0). The values of C1 and C2 are set by the requirement
that the number of I and II.1 candidates in Part A, as given by N1 and N2,
is the same as the I and II.1 number of USMs achieved on the paper. The
value of C3 is set by the requirement that P2P3 continued would intersect
the U axis at U0 = 10. Here the default choice of corners is given by U-values
of 72, 57 and 37 to avoid distorting nonlinearity at the class borderlines.

The results of the algorithm with the default settings of the parameters
provide the starting point for the determination of USMs, and the Exam-
iners may then adjust them to take account of consultations with assessors
(see above) and their own judgement. The examiners have scope to make
changes, either globally by changing certain parameters, or on individ-
ual papers usually by adjusting the position of the corner points P1,P2,P3

by hand, so as to alter the map raw → USM, to remedy any perceived
unfairness introduced by the algorithm. They also have the option to in-
troduce additional corners. For a well-set paper taken by a large number
of candidates, the algorithm yields a piecewise linear map which is fairly
close to linear, usually with somewhat steeper first and last segments. If
the paper is too easy or too difficult, or is taken by only a few candidates,
then the algorithm can yield anomalous results—very steep first or last
sections, for instance, so that a small difference in raw mark can lead to a
relatively large difference in USMs. For papers with small numbers of can-
didates, moderation may be carried out by hand rather than by applying
the algorithm.

Following customary practice, a preliminary, non-plenary, meeting of ex-
aminers was held ahead of the first plenary examiners’ meeting to assess
the results produced by the algorithm, to identify problematic papers and
to try some experimental changes to the scaling of individual papers. This
provided a starting point for the first plenary meeting to obtain a set of
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USM maps yielding a tentative class list with class percentages roughly in
line with historic data.

The first plenary examiners’ meeting, jointly with Mathematics & Statis-
tics examiners, began with a brief overview of the methodology and of this
year’s data. Then we considered the scaling of each paper, making provi-
sional adjustments in some cases. The full session was then adjourned to
allow the examiners to look at scripts. This was both to help the external
examiners to form a view of overall standards, and to answer questions
that had arisen on how best to scale individual papers; for instance, to
decide whether a given raw mark should correspond to the I/II.1 or II.1/II.2
borderline, an examiner would read all scripts scoring close to this raw
mark, and make a judgement on their standard.

The examiners reconvened and we then carried out a further scrutiny of
the scaling of each paper, making small adjustments in some cases before
confirming the scaling map (those Mathematics & Statistics examiners
who were not Mathematics examiners left the meeting once all papers
with significant numbers of Mathematics & Statistics candidates had been
considered).

Table 2 on page 9 gives the final positions of the corners of the piecewise
linear maps used to determine USMs.

The Mathematics examiners reviewed the positions of all borderlines for
their cohort. For candidates very close to the proposed borderlines, marks
profiles and particular scripts were reviewed before the class list was fi-
nalised.

In accordance with the agreement between the Mathematics Department
and the Computer Science Department, the final USM maps were passed
to the examiners in Mathematics & Computer Science. USM marks for
Mathematics papers of candidates in Mathematics & Philosophy were cal-
culated using the same final maps and passed to the examiners for that
School.

Mitigating Circumstance Notice to Examiners

A subset of the board (the ’Mitigating Circumstances Panel’) had a prelimi-
nary meeting to discuss the individual notices to examiners at Part B. There
were 14 notices, which the panel classified in bands 1, 2, 3 as appropriate.
A further 3 notices were received after the panel had met. The full board
of examiners considered the 17 cases in the final meeting, and the certifi-
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cates passed on by the examiners in Part A 2018 were also considered. All
candidates with certain conditions (such as dyslexia, dyspraxia, etc.) were
given special consideration in the conditions and/or time allowed for their
papers, as agreed by the Proctors. Each such paper was clearly labelled to
assist the assessors and examiners in awarding fair marks.
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Table 2: Position of corners of the piecewise linear maps

Paper P1 P2 P3 Additional N1 N2 N3

Corners
B1.1 (27, 50) (40.8, 57) (46.8, 72) 13 22 14
B1.2 (12, 37) (28.3, 57) (42, 72) 22 26 14
B2.1 (10.34, 37) (18, 57) (35, 72) 18 10 3
B2.2 (9.36, 37) (16.3, 57) (33, 72) 18 10 2
B3.1 (9.42, 37) (16.4, 57) (36.5, 72) 28 19 6
B3.2 (15.68, 37) (33, 57) (40, 72) 9 5 4
B3.3 (14, 50) (23.6, 57) (35.6, 72) 12 4 2
B3.4 (16, 50) (22.4, 57) (41, 72) 26 17 6
B3.5 (0, 0) (18.5, 57) (38.8, 72) 15 13 5
B4.1 (12.81, 37) (22.3, 57) (36.5, 72) 24 19 6
B4.2 (10.85, 37) (18.9, 57) (32, 72) 20 17 5
B4.3 (16.65, 37) (29, 57) (41, 72) 4 11 3
B5.1 (0, 0) (16, 57) (33, 72) 4 23 8
B5.2 (15.05, 37) (26.02, 57) (35.2, 72) 14 27 7
B5.3 (12.86, 37) (22.4, 57) (37, 72) 9 13 6
B5.4 (12.29, 37) (21.4, 57) (39.4, 72) 10 14 5
B5.5 (12.35, 37) (21.5, 57) (39, 70) 6 27 9
B5.6 (13.95, 37) (24.3, 57) (37.8, 72) 8 21 6
B6.1 (17, 37) (29.6, 57) (41.6, 72) 8 14 4
B6.2 (14, 37) (31, 57) (40, 70) 3 4 2
B6.3 (12, 37) (0, 0) (30, 70) 1 4 5
B7.1 (13.55, 37) (23.6, 57) (35.6, 72) 11 7 3
B7.2 (8.78, 37) (19, 57) (28.8, 72) 10 4 0
B7.3 (10.68, 37) (18.6, 57) (36, 72) 10 9 2
B8.1 (12.69, 37) (22.1, 57) (42.5, 72) 30 31 7
B8.2 (12.69, 37) (22.1, 57) (42.6, 72) 18 13 3
B8.3 (15.33, 37) (26.7, 57) (40, 70) 18 45 19
B8.4 (13.95, 37) (24.3, 57) (37, 70) 9 21 6
B8.5 (11.48, 37) (20, 57) (36, 72) 11 10 9
SB1.1/SB1.2 (19.64, 37) (34.2,57) (53, 70) 6 27 9
SB2.1 (6, 20) (15, 60) (30.6, 72) 9 25 7
SB2.2 (15.16, 37) (26.4, 57) (40, 70) 15 34 12
SB3.1 (10.39, 37) (18.1, 57) (37.6, 72) 30 62 20
SB3.2 (13.27, 37) (23.1, 57) (40, 70) 2 11 3
SB4 (11.71, 37) (20.4, 57) (38.4, 72) 7 30 14
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Table 3 gives the rank of candidates and the number and percentage of
candidates attaining this or a greater (weighted) average USM.
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Table 3: Rank and percentage of candidates with this or greater overall USMs

Av USM Rank Candidates with %
this USM and above

98 1 1 0.66
89 2 2 1.32
88 3 3 1.99
87 4 4 2.65
85 5 6 3.97
83 7 8 5.3
82 9 9 5.96
81 10 11 7.28
80 12 13 8.61
79 14 16 10.6
78 17 20 13.25
76 21 29 19.21
75 30 33 21.85
74 34 37 24.5
73 38 42 27.81
72 43 45 29.8
71 46 52 34.44
70 53 58 38.41
69 59 65 43.05
68 66 69 45.7
67 70 79 52.32
66 80 87 57.62
65 88 93 61.59
64 94 100 66.23
63 101 105 69.54
62 106 112 74.17
61 113 118 78.15
60 119 124 82.12
59 125 126 83.44
58 127 127 84.11
57 128 128 84.77
56 129 130 86.09
55 131 134 88.74
54 135 136 90.07
53 137 139 92.05
52 140 141 93.38
51 142 143 94.7
50 144 146 96.69
47 147 147 97.35
46 148 148 98.01
43 149 149 98.68
42 150 150 99.34
20 151 151 100
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B. Equality and Diversity issues and breakdown of the re-
sults by gender

Table 4: Breakdown of results by gender

Class Number
2019 2018 2017

Female Male Total Female Male Total Female Male Total
I 13 46 59 9 49 58 6 45 51
II.1 18 49 67 15 52 67 21 43 64
II.2 5 15 20 9 16 25 5 6 11
III 1 3 4 0 2 2 0 3 3
P 0 0 0 0 2 2 0 2 2
F 0 1 1 0 0 0 0 0 0
Total 37 114 151 33 119 152 32 99 131
Class Percentage

2019 2018 2017
Female Male Total Female Male Total Female Male Total

I 35.14 40.35 39.07 27.27 41.18 38.16 18.75 45.45 38.93
II.1 48.65 42.98 44.37 45.45 43.7 44.08 65.62 43.43 48.85
II.2 13.51 13.16 13.25 27.27 13.45 16.45 15.62 6.06 8.39
III 2.7 2.63 2.65 0 1.68 1.32 0 3.03 2.29
P 0 0 0 0 0 0 0 2.02 1.52
F 0 0.88 0.66 0 0 0 0 0 0
Total 100 100 100 100 100 100 100 100 100

Table 4 shows the performances of candidates broken down by gender.
The examiners were pleased to note that there is far better equality this
year than in recent years, and were particularly encouraged to see the
high percentage of female candidates getting firsts (35 percent, up from 27
and 18 in the previous two years) as well as the low percentage of female
candidates getting II.2s (13.5 percent, down from 27 percent last year).
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C. Detailed numbers on candidates’ performance in each
part of the examination

The number of candidates taking each paper is shown in Table 5.

Table 5: Numbers taking each paper

Paper Number of Avg StDev Avg StDev
Candidates RAW RAW USM USM

B1.1 48 41.69 6.51 64.58 11.25
B1.2 63 34.65 9.94 65.87 15.04
B2.1 33 30.48 9.22 68.7 12.37
B2.2 31 29.03 8.18 69.1 10.55
B3.1 54 31.7 12 69.59 18.67
B3.2 18 37.89 7.58 70.44 16.13
B3.3 18 36.06 9.09 77 11.86
B3.4 51 34.98 11.54 69.71 18.93
B3.5 34 33.06 7.01 68.76 7.93
B4.1 47 34.77 8.18 72.91 12.42
B4.2 41 30.24 8.22 70.98 11.38
B4.3 18 36.72 6.11 67.17 8.82
B5.1 31 19.84 9.36 56.06 15.71
B5.2 50 31.84 6.37 66.54 11.28
B5.3 29 33.14 7.57 69.21 10.81
B5.4 30 32.3 8.18 66.97 10.78
B5.5 37 31.65 8.35 65.57 10.57
B5.6 37 30.32 5.24 63.43 6.59
B6.1 24 34.75 7.43 63.25 11.66
B6.2 11 35.36 10.58 66.82 17.28
B6.3 9 23.22 10.73 56.78 18.75
B7.1 22 32.27 8.15 68.73 12.77
B7.2 14 31.07 7.66 74.5 10.7
B7.3 24 27.62 10.45 63.79 17.1
B8.1 56 37.41 8.73 72.7 13.4
B8.2 27 38.44 5.73 70.7 7.73
B8.3 64 34.47 8.15 66.52 11.17
B8.4 29 29.41 8.49 61.62 15.07
B8.5 28 28.25 8.58 64.96 11.51
SB1 - - - - -
SB2.1 12 22.75 9.02 64.58 13.33
SB2.2 27 35.41 8.13 67.56 13.36
SB3.1 79 28.86 8.78 66.23 10.15
SB3.2 7 30 7.37 61.43 7.41
SB4 31 25.65 6.78 60.65 8.81
CS3a - - - - -
CS4b - - - - -
BO1.1 6 - - 65 12.97
BO1.1X 6 - - 65.83 13.96
BN1.1 11 - - 67.90 4.61
BN1.2 10 - - 65.6 2.79
BEE 7 - - 73.85 7.10
BSP 8 - - 70.62 11.19
102 - - - - -
127 - - - - -
129 - - - - -
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Individual question statistics for Mathematics candidates are shown below
for those papers offered by no fewer than six candidates.

Paper B1.1: Logic

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 22.81 22.81 2.61 48 0
Q2 18.10 18.38 5.06 36 1
Q3 20.33 20.33 3.02 12 0

Paper B1.2: Set Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.48 16.90 6.80 21 6
Q2 16.48 17.28 6.77 53 3
Q3 17.43 17.53 4.94 52 1

Paper B2.1: Introduction to Representation Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.31 16.07 5.32 27 2
Q2 14.16 14.16 4.9 30 0
Q3 16.33 16.33 6.02 9 0

Paper B2.2: Commutative Algebra

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.09 15.09 4.98 31 0
Q2 13.46 13.89 5.39 29 1
Q3 6.85 14.5 5.72 2 5

Paper B3.1: Galois Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.27 17.27 6.15 54 0
Q2 4 4.75 3.57 8 3
Q3 15.80 16.10 6.68 46 1
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Paper B3.2: Geometry of Surfaces

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 20.2 20.2 3.84 18 0
Q2 17.4 17.4 4.80 15 0
Q3 12.4 18.66 9.01 3 2

Paper B3.3: Algebraic Curves

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.5 19.5 5.00 18 0
Q2 14.46 17.81 7.38 11 4
Q3 14.57 14.57 3.86 7 0

Paper B3.4: Algebraic Number Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.79 16.79 6.64 34 0
Q2 16.20 16.20 5.92 34 0
Q3 17.58 19.47 7.31 34 5

Paper B3.5: Topology and Groups

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.33 15.18 5.46 22 2
Q2 17.15 17.15 4.03 33 0
Q3 17.23 17.23 4.16 13 0

Paper B4.1: Functional Analysis I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.34 18.34 4.10 44 0
Q2 14.72 15.60 5.84 23 2
Q3 16.78 17.33 5.78 27 1
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Paper B4.2: Functional Analysis II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.68 15.75 5.93 20 2
Q2 14 14.53 5.71 30 2
Q3 15.28 15.28 3.65 32 0

Paper B4.3: Distribution Theory and Fourier Analysis: An Introduction

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.94 17.94 3.52 17 0
Q2 18.55 18.55 3.56 18 0
Q3 22 22 - 1 0

Paper B5.1: Stochastic Modelling and Biological Processes

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.58 12.58 5.39 31 0
Q2 6.84 7.43 5.59 23 3
Q3 7.44 9 6.42 6 3

Paper B5.2: Applied PDEs

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.45 16.74 4.34 43 1
Q2 14.52 14.83 4.90 24 1
Q3 15.20 15.63 4.27 33 1

Paper B5.3: Viscous Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.78 17.78 3.64 28 0
Q2 16.21 16.21 4.19 19 0
Q3 11.5 14.09 7.35 11 3
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Paper B5.4: Waves and Compressible Flow

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.43 16.43 3.70 23 0
Q2 17.24 17.24 5.44 25 0
Q3 13.33 13.33 3.96 12 0

Paper B5.5: Further Mathematical Biology

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 16.78 16.78 5.19 33 0
Q2 15.97 16.25 4.57 35 1
Q3 6.75 8 2.26 6 6

Paper B5.6: Nonlinear Systems

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.67 15.67 3.60 34 0
Q2 12.95 15.66 6.07 18 5
Q3 13.95 13.95 3.78 22 0

Paper B6.1: Numerical Solution of Differential Equations I

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.81 16.14 5.14 21 1
Q2 12.33 19 8.26 3 3
Q3 18.25 18.25 3.19 24 0

Paper B6.2: Numerical Solution of Differential Equations II

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 7 7 - 1 0
Q2 17 17 7.05 10 0
Q3 19.27 19.27 3.92 11 2
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Paper B6.3: Integer Programming

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 9.42 9.42 3.59 7 0
Q2 13.42 14.8 6.99 5 2
Q3 11.5 11.5 6.47 6 0

Paper B7.1: Classical Mechanics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.38 14.38 3.93 21 0
Q2 16.35 16.35 4.55 14 0
Q3 18.09 19.88 6.51 9 2

Paper B7.2: Electromagnetism

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.85 13.69 6.91 13 1
Q2 8.25 14.5 7.32 2 2
Q3 17.53 17.53 3.50 13 0

Paper B7.3: Further Quantum Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.14 13 6.88 13 1
Q2 13.94 13.94 4.84 18 0
Q3 13.83 14.29 6.38 17 1

Paper B8.1: Martingales through Measure Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18.74 19.57 5.47 33 2
Q2 17.69 18.02 4.97 35 1
Q3 17.95 18.59 6.50 44 2

18



Paper B8.2: Continuous Martingales and Stochastic Calculus

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 19.09 19.65 4.20 20 1
Q2 19.26 19.26 3.14 19 0
Q3 17.76 18.6 4.58 15 2

Paper B8.3: Mathematical Models of Financial Derivatives

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 17.68 17.68 3.93 63 0
Q2 17.09 17.39 5.51 53 1
Q3 14.16 14.16 4.26 12 0

Paper B8.4: Communication Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15.80 16.62 5.81 24 2
Q2 13.65 14.22 4.49 18 2
Q3 11.7 12.37 4.31 16 4

Paper B8.5: Graph Theory

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14.78 14.78 3.66 23 0
Q2 14.41 15 5.33 11 1
Q3 13 13 5.38 22 0

Paper SB1.1/1.2: Applied Statistics/Computational Statistics

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 15 15 - 1 0
Q2 21 21 - 1 0
Q3 19 19 - 1 0
PR 30 30 - 1 0
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Paper SB2.1: Foundations of Statistical Inference

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 10.62 13 7.53 6 2
Q2 7.14 7.14 4.05 7 0
Q3 13.18 13.18 3.89 11 0

Paper SB2.2: Statistical Machine Learning

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 18 18.4 5.11 20 1
Q2 16.39 16.39 5.68 23 0
Q3 17.75 19.18 6.06 11 1

Paper SB3.1: Applied Probability

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 13.29 13.29 5.00 77 0
Q2 12.37 12.60 4.19 23 1
Q3 16.65 16.65 4.82 58 0

Paper SB3.2: Statistical Lifetime-Models

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 14 14 4.97 6 0
Q2 15.71 15.71 4.82 7 0
Q3 16 16 - 1 0

Paper SB4: Actuarial Science

Question Mean Mark Std Dev Number of attempts
All Used Used Unused

Q1 12.96 13.4 4.78 25 2
Q2 11.8 11.8 3.56 20 0
Q3 12.1 13.17 4.25 17 3
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D. Assessors’ comments on sections and on individual ques-
tions

The comments which follow were submitted by the assessors, and have
been reproduced with only minimal editing. The examiners have not in-
cluded assessors’ statements suggesting where possible borderlines might
lie; they did take note of this guidance when determining the USM maps.
Some statistical data which can be found in Section C above has also been
removed.

B1.1: Logic

Everyone did Question 1, mostly scoring high. The last part of (c) was new
and challenging, the main difficulty encountered was how to rigorously
show that certain formulas were not instances of the given axioms.

Question 2 was also very popular, though few candidates managed to
answer part (b)(i) correctly, because the statement to be proved via standard
induction was not given and it was not easy to guess either. Hardly
anyone made use of the simplicity of tautological atomic formulas in the
underlying language.

The main conceptual challenge in Question 3 was the non-standard model
of Peano arithmetic invoked in part (b)(iii). While those candidates who
just used its existence (via the Compactness Theorem) took no risk, the
ones who explored it further lost feathers in the fight.

B1.2: Set Theory

Problem 1. This was the least-attempted question perhaps due to (a) (iii)
being perceived as tricky. (a)(i) and (a) (ii) were generally well done, (a)
(iii) was indeed harder, with some getting only inequalities. Part (b) was
generally well done though a number of students affirmed the assertion in
(i), missing the possible failure if Y,V are empty. Part (c) (i) was generally
well done, (ii) mostly also while fewer gave a correct answer to (iii).

Problem 2. In part (a), subparts (i), (ii), (iii) were generally well done. (iv)
saw a lot of convoluted arguments but many got through. Part (b) was
generally well done, and nearly everyone who attempted this problem
answered (iii) correctly. In Part (c), many answered (i) well but many also
did not correctly employ AC to make their choices, which was the point
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of the problem. (ii) was also generally well done, though quite a few lost
their way.

Problem 3. In (a), parts (i) and (ii) were generally done with no problems.
Many were careless in (iii). It is not sufficient to take well ordered sets A,B
order isomorphic to α, β and then form B−A, nor even to stipulate A ⊆ B, as
one needs A to be an initial segment for the sum order of A,B−A to coincide
with the order on B. (b) (i) was generally done without problems. In (iii)
very many did not fully check that ∈ is a well-order on A. The existence of
minimal elements is not sufficient: it needs to be a strict total order. Part
3 was generally quite well done, though quite a few were careless about
checking non-emptiness and fully checking the chain condition.

B2.1: Introduction to Representation Theory

Question 1 was mostly OK, the parts that proved more challenging were
(b)(iii) (the implication: if f has an irreducible factor with multiplicity
greater than 1, then A is not semisimple) and part (c)(ii). There was no
need to use Artin-Wedderburn or the notion of the radical of an algebra
to prove/disprove semisimplicity. In (b)(iii), it was fine to use the Chinese
Remainder Theorem for rings (without proof).

Question 2: in (a)(iii), a common mistake was to give a map that wasn’t
well-defined, e.g., eae maps to right multiplication by a (rather than eae). For
(a)(iv), it was acceptable to give an example in a concrete group algebra
(e.g., CC2) rather than in an arbitrary finite group. Parts (b)(iii) and (c)
proved to be quite difficult. Part (b)(iii) is a particular, easy case of the
general construction of idempotents attached to irreducible characters (as
in one of the problem sheets/lecture notes), but can be done directly as
well. In part (c), many candidates correctly explained how to identify the
conjugacy classes of the centre of G, but very few attempted to explain how
one might obtain the characters of the centre.

Question 3 was attempted by fewer candidates than questions 1 or 2.
Several solutions assumed that the group in (b) is the dihedral group D12.
The most difficult parts proved to be (c)(i) and (c)(iii).

B2.2: Commutative Algebra

Question 1 was universally popular with the students, with everyone at-
tempting it without exception. The bookwork parts were mostly done well,
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although a large number of people seemed to be confused by the statement
of Zorn’s Lemma presented in the course. There were several ingenious
solutions to the unseen parts (d) and (e), including a single perfect score
of 25. However far too many people decided that part (d) was bookwork
— the existence of minimal prime ideals was indeed proved for Noetherian
rings during the lectures, but no Noetherian hypothesis was present in this
exam question. Candidates who tried to replicate this proof received zero
marks for part (d).

Question 2 was the next most popular question with over 85% of the
cohort having a go at it. Some people confused the statement of the Cayley
Hamilton Theorem with the statement of the Nakayama Lemma in part
(a), which led them to lose most of the seven marks available. Part (b)
was mostly done well except nearly everyone forgot to remember that it
is necessary to show that 0 lies in a subset of the ring (or at least show
the candidate subset is nonempty) for it to be an ideal. Parts (c) and (d)
were quite hard but nevertheless one or two people got (d) out, and one
got (c) out with several people coming quite close. In part (d), too many
students declared that IJ = J as being obvious; this cannot be the case as
the wording of the question implied that you need to use the result of part
(c) to establish this.

Question 3 was attempted by very few people. The bookwork parts (a)
and (b) were done reasonably well, but (c) proved to be difficult and (d)
even more so. The number of people taking on the question was small so
it is hard to make any kinds of conclusions, although arguably the unseen
material in Question 3 is easier than that in Question 2.

B3.1: Galois Theory

Q1 and Q3 were by far the most popular.

In Q1 (d) most students forgot to consider the issue of the irreducibility of
the polynomial (or an equivalent statement).

Q2 (d) and (e) were not solved satisfactorily by any candidate.

In Q3 (c) the fact that the field extension is inseparable was overlooked by
many.
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B3.2: Geometry of Surfaces

Almost all candidates chose exercises 1 and 2.

Exercise 1: (c) after noticing the Euler characteristic is (strictly) positive,
some candidates did not rule out the non-orientable surface case; (d) many
candidates just assumed there was only one additional point at infinity
in the compactification without checking the solutions after the suggested
change of coordinates in the hint, candidates sometimes did not say which
map they were applying Riemann-Hurwitz to, or did not explain why it
was holomorphic (1 mark), computational mistakes occurred in correctly
finding the branch points.

Exercise 2: (a) a lot of imprecision in defining a smooth surface in R3

(as opposed to an abstract smooth surface); (b) candidates often forgot to
explain why F was a parametrisation, using the non-zero condition in the
assumptions; (c) imprecision in stating the theorem: it is crucial to say that
one uses the same open set in R2 as domain for both parametrisation maps.

Exercise 3: (c) candidates showed the maps were equal on an open neigh-
bourhood of p, but didn’t properly explain how to use connectedness and
the openness of the condition to get equality everywhere; (d) very similar
to the notes, but deals with the case of the upper half-plane as opposed to
the disc model.

B3.3 Algebraic Curves

Question 1: An elementary question attempted by everyone. The most
common faults were in (b), in not justifying P1, P2, Q3, Q2 in general
position, and then in not computing coordinates of R1, R2, R3 correctly.

Question 2: Attempted by most candidates, but found more difficult than 1.
In (b) many candidates did not get to the end of the computation of p1, p2,
p3. In (c), candidates should have split into two cases (i) C singular (done
using (a)), and (ii) C non-singular (done using (b)), but most candidates
did not notice case (i).

Question 3: The least popular question. The few candidates who under-
stood this part of the course well and applied Riemann-Roch correctly
were able to get nearly full marks on (a),(b). No one did a good job of (c),
typically candidates did not see that they can use the action of σ on w and
f (w) = w–2 + O(w–1) to deduce the eigenvalue of σ on f , and similarly for
g.
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B3.4: Algebraic Number Theory

1.(a) This was standard bookwork and many students did well. In defining
the discriminant of a lattice, I expected students to be at least aware of the
need to show independence of basis, but very few students did this. One
mark was taken off for failure to notice this.

(b) Most students did well with this problem.

(c) This problem was done easily by many students, but a substantial
number also experienced difficulty. Understanding the precise application
of Eisenstein’s criterion seems to have been a stumbling block. Also, many
students had a bit of difficulty computing the discriminant, which could
have been done with a standard formula.

(d) The first part on the norm criterion for being a unit was easily han-
dled. However, many students struggled with finding units. Facility with
computing norms was the main skill needed.

2.

(a) Most students stated things correctly, although the degree of precision
varied. The marking was done mostly generously, provided the students
gave evidence of understanding what the key points were.
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(b) The first part was found easy by most students. However, the second
was done correctly by very few students. It occurred to me that to pro-
duce two *principal* ideals that are coprime may have been a bit hard for
students. On the other hand, since the examples of quadratic fields whose
rings of integers are PIDs are quite standard, they should have been able
to do this.

(c) This problem was done fairly well by many students. It was especially
good to see many students factoring (3 − α) with little difficulty.

(d) This problem was quite challenging, but I think it did perform the
function of distinguishing those students who understood the basic notions
relevant to working in rings of integers.

3. (a) This was mostly straightforward, and problems arose mostly from
calculation errors.

(b) This was also a standard problem, but not a few students experienced
difficulty writing out the logic clearly. The argument that goes into proving
that the ideals (y −

√
5) and (y +

√
5) are coprime is a bit delicate.

(c) This was probably the most difficulty problem in the examination and
many students struggled. However, a substantial number did seem to
understand what needed to be done, and this was good to see.

B3.5 Topology and Groups

Question 1

28 attempts. Part (a) was mostly bookwork. It required the students to
remember the definition of push-outs and their universal property, and
to apply this knowledge. It was well done. Part (b) was harder. Most
people could correctly explain what happens to the fundamental group
of a space when a 2-cell attached. Question (b)(ii) was less well done.
Many students claimed that the fundamental group of the wedge of two
spaces is equal to their free product, which is not true in general because
the basepoints need not be contained in a contractible open set. However,
I gave significant partial credit for solutions along these lines. The final
part (b)(iii) was difficult. Spaces such as the Hawaiian earings provide the
required examples.

Question 2
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41 attempts. Part (a) was about homomorphisms from finitely presented
groups, and was well done. Part (b)(i) was straightforward, but (b)(ii)
was found to be quite difficult. It could be answered by defining the
map f one cell at a time. Alternatively, an explicit map, defined using
polar co-ordinates on the disc, also gives the correct answer. Part (c) was
a challenging question about Tietze transformations. There were several
very good answers. When students were clearly going in the right direction
but were unable to provide a complete sequence of Tietze transformations
relating the two presentations, I gave partial credit.

Question 3

18 attempts. Despite its apparent length, this question was the most acces-
sible of the three. The last part of the course, on covering spaces, is widely
viewed as quite difficult. But this question mostly required students to
understand just the basic properties of covering spaces. The one moder-
ately difficult part was (b)(v), which required both the homotopy lifting
property and the uniqueness of lifts.

B4.1: Functional Analysis I

No comments.

B4.2: Functional Analysis II

Q1: This question was tried by half of the candidates. Part (a) was handled
mostly well with some minor exceptions. Part (b)(i) was handled reason-
ably well, though a number of candidates did not realise that injectivity
is an immediate consequence of the fact that the trigonometric system is
an orthonormal basis of L2. Part (b)(iii) is somewhat tricky but most of
those who attempted did very well using term-wise differentiation rule
and (b)(i). Part (b)(ii) appears hardest. Many candidates who attempted
this part arrived correctly at the idea of using the open mapping theorem
or inverse function theorem but only some could pull it through.

Q2: This question was tried by three quarters of the candidates. The
bookwork parts were handled mostly well with some minor exceptions.
Most candidates had a feeling what an example for (a)(ii) would look
like though some had difficulties in justifying their answers. Part (b)(iii)
appears trickiest. It involves an application of the principle of uniform
boundedness after establishing two-sided bounds for linear functionals
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from an easily derivable lower bound and those who realised the issue did
well.

Q3. This question was tried by about three quarters of the candidates.
Part (a) was handled reasonably well by most candidates, though some
candidates missed a small difference for r and U in (ii) and (iii). Part (b)(i)
and (ii) were handled somewhat less well – some candidates did not apply
the Cauchy-Schwarz inequality correctly. A majority of the candidates who
attempted (b)(iii) applied correctly known results to limit the possible sets
for the spectrum though had difficulties in pinning down the correct set,
which could be done by either explicitly pointing out the eigenfunctions
or by showing that some operators are non-trivial.

B4.3: Distribution Theory and Fourier Analysis: An Intro-
duction

Question 1 examined the notion of distributional derivative and its connec-
tions with the usual derivative. Most candidates attempted this question
and all performed well on the routine bookwork part (a). Many lost some
marks for not being careful enough with the integration by parts calcula-
tion required in part(b). Despite this most spotted that it was important
for the given function to be continuous for the result to be true. The inte-
gration by parts argument in part (c) went generally well, while the final
part (d) was missed by many.

Question 2 examined tempered distributions and the Fourier transform.
All candidates attempted this question and there were many very good
answers. All did well on the routine bookwork part (a), though some lost
marks for giving careless proofs of the integrability of Schwartz test func-
tions. The calculation required for (b) went generally well, even though a
few struggled to convincingly show that the natural logarithm log |x| can be
considered to be a tempered distribution. To show that E is a fundamental
solution in part (c) caused some difficulty for about half of the candidates,
whereas almost all easily found its Fourier transform. The final part (d)
nobody got completely correct, though about half earned a few marks for
doing a formal calculation.

Question 3 examined convergence of tempered distributions and built
up an independent proof of the Poisson Summation Formula (meaning
different from the one given in lectures and not using any prior knowledge
about Fourier series). Only one candidate attempted the question, but
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did very well. The question looks long (slightly over one page) and this
might be the reason for its unpopularity. Another one could be its explicit
connection to the Part A Complex Analysis course in parts (b) and (c).

B5.1: Stochastic Modelling and Biological Processes

The first question was attempted by all candidates, the second question by
84% of candidates, while the third question was the least popular, but still
attempted by 40% of candidates. Most of the candidates (95%) attempted
at least two questions and can be divided into three groups:

(a) candidates who submitted Questions 1 and 2 for assessment (55%);

(b) candidates who submitted Questions 1 and 3 for assessment (11%);

(c) candidates who submitted Questions 1, 2 and 3 for assessment (29%).

The popularity of Question 1 does not necessarily mean that it was the
easiest one. The submitted solutions included some perfect and elegant
answers, but there was also a significant number of incomplete and in-
correct solutions, which worryingly showed gaps in some candidates’ un-
derstanding of background Prelims and Part A courses, which course B5.1
builds on. The majority of correct answers were based on the analysis of
the chemical master equation. In part (b), many candidates noticed that
there can be 1, 3, or 5 molecules of A1 at any time in the system. They then
approached the problem by deriving a system of three ordinary differential
equation for three variables

f (t) =

∞∑
n2=0

∞∑
n3=0

p(5,n2,n3, t), g(t) =

∞∑
n2=0

∞∑
n3=0

p(3,n2,n3, t), and h(t).

Solving this system, they obtained the correct answer to part (b). Other can-
didates chose an alternative approach, observing that the reactor contains
exactly one molecule of A1 after the first reaction (i.e. A1 + A1 → A2 + A2)
occurs exactly twice. Therefore the answer to part (b) can also be equiva-
lently obtained by calculating the probability that the first reaction happens
twice in the interval [0, t].

Although Question 1 was attempted by all candidates, the candidates
could also do very well if they only focused on Questions 2 and 3. Indeed,
a couple of students in group (c) had their two best questions counted as
Questions 2 and 3. In Question 2, many candidates correctly derived a
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system of three ordinary differential equations for 〈V2(t)〉, 〈U(t)V(t)〉 and
〈U2(t)〉. Some candidates did not know what to do with this system to get
the answer to part (a) of Question 2, while others got the correct answer
by looking for the steady state solutions of this system.

In Question 3, a common problem included using polar coordinates. Con-
sidering that a function, say φ, in the N-dimensional space only depends
on the distance, r, from the origin, say φ ≡ φ(r), the Laplace operator
applied to φ can be given as

4φ =
∂2φ

∂r2 +
N − 1

r
∂φ

∂r
.

Some candidates used this formula for N = 3, but Question 3 considers
a particle diffusing inside (or outside) circles, so we should have N = 2.
Then the above formula simplifies to:

4φ =
∂2φ

∂r2 +
1
r
∂φ

∂r
.

This mistake does not much alter the approach to solving Question 3, but
it does change some answers. For example, 1/r is a solution of 4φ = 0 for
N = 3, while log(r) solves 4φ = 0 for N = 2.

B5.2: Applied PDEs

Q1. This problem was attempted by nearly all candidates. Part a was
mostly well done; (a)iii did not require any computation, only the observa-
tion that characteristics within each family do not intersect, and therefore
the domain of definition is the region intersected by both families of char-
acteristics and the data curve.

The desired canonical form in part (b)i used characteristic coordinates
η = y − log x, ξ = x. Most candidates made this choice, either as a de-
fault or logically by noting the various x’s present in the PDE. Alternative
choices for ξ would lead to a a different canonical form. It was deemed
that some guidance should have been given to steer candidates toward
the choice ξ = x; therefore full marks were given on this part for those
who correctly produced a different canonical form. Part (b)ii could be
solved independently and required careful treatment of boundary condi-
tions to produce the correct form. Part (b)iii simply involved tracing back
through the changes of variables both through similarity construction and
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characteristic coordinates. For those candidates with a different but cor-
rect canonical form a generic answer that demonstrated the concept was
accepted for full marks.

Q2. This question was attempted by about half of the candidates. Part
(a) required the connection P = au, Q = bu as conservation form in the
case of semi-linear PDE aux + buy = c; this bit of bookwork was missed by
almost half of those who attempted this question. In (b)ii the key was to
recognize that in the ‘filling’ region, dx/dt = x/t; combining this with the
characteristic equation dx/dt = u3 gave the desired solution.

Part (c) was largely hit or miss for candidates. The first two shocks begin at
(x, t) = (±1, 1), and those two shocks then intersect at (0, 3), creating a single
shock following the t-axis and separating the constant solutions u = ±1.

Q3. This question was attempted by about two thirds of the candidates.
The best answer to part (a) involved noting that the envelope marks the
boundary of where the solution becomes multi-valued, and above this
curve the solution surface would show a fold.

Part (b) was mostly straightforward, a small adaptation on the bookwork
derivation and was handled well by most candidates. In part (c), construct-
ing the parametric solution was also mostly straightforward, but obtaining
the domain of definition was a significant challenge. This required consid-
eration of (1) the characteristics at the endpoints of the boundary curve,
(2) noting that the characteristics approach a finite curve as τ → ∞, and
(3) computation of the envelope. The last step was a tricky calculation,
but a fair bit easier to solve with the approach G = ∂G/∂s = 0, where
G(x, y; s) = 0 is the family of characteristics, than the Jacobian calculation.
No candidates got all details correct, but several got very close.

B5.3: Viscous Flow

Question 1. All candidates attempted this question, and almost all received
full marks for (a). A few candidates made sign errors in (iii) that were
completely unrelated to the sign of F in (b).

Part (b) was mostly done well, despite the unfortunate sign error in F that
was spotted and announced 15 minutes into the exam. A few candidates
had difficulty identifying the correct pressure scale [p] = 2ρΩUL.

In part (c) many candidates did not use the given structure of the solution:
no pressure gradient, and a velocity that is horizontal and only a function
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of z. However, almost everyone eventually reached u = Ev′′ and −v = Eu′′.
Many candidates could not proceed from there, either by eliminating v to
obtain −u = E2u′′′′, or (in one elegant solution) by considering u + iv. The
solution that decays as z→ −∞ is u = eη(U cos η−V sin η) with η = z/

√
2E.

Several candidates obtained solutions involving z with incorrect powers
of E so the integration in the last step came out incorrectly.

Question 2 was attempted by 2/3 of candidates. There was an unnoticed
error in the definition of the Péclet number in the question, which was
the reciprocal of the correct expression. All candidates who scaled the
temperature correctly were given full marks for the affected section (b).

Many attempts at (a) omitted the pressure term from σi j and glossed over
the justification for replacing ∂ jui by 1

2 (∂ jui + ∂iu j).

Around half the attempts at part (b) found the correct δ = Pe−1/3
� 1

scaling (with the correct definition Pe = γL2/κ). Several candidates tried a
simple multiplicative scaling between T and θ, when one needs to write
T = T∞ + (Twall − T∞)θ to convert the boundary conditions to θ = 1 on the
wall and θ→ 0 far from the wall.

Most candidates found part (c) straightforward, however many of them
lost a minus sign when integrating f ′(η) = −A exp(−η3/9) to get the given
expression for f with η as the lower integration limit.

Very few candidates made much progress with part (d). The dimensionless
heat flux leaving the wall is −∂Yθ = −X−1/3 f ′(0), with a minus sign because
q = −k∇T. One then just needs to express the constant A in terms of a Γ
function by substituting w = s3/9 in the integral expression for A.

Question 3 was the least popular. About 1/3 candidates attempted it, of
which half were largely successful.

In (a) several candidates took the velocity scale as Ω instead of Ωa. Several
candidates simply asserted the dimensionless boundary condition, instead
of calculating it from the dimensionless form of Ωk ∧ x.

In (b) not everyone checked that u0 satisfied the boundary conditions as
well as showing that ∇2u0 = 0.

The starting point for (c) is u0 · ∇u0 = −∇p1 + ∇2u1. The left hand side
was sometimes omitted, or u0 and u1 were swapped. The pressure p1

was often omitted, though this mistake was harmless as the next step is
to take the curl to eliminate ∇p1. Taking ψ(r, θ) = F(r) sin2 θ cosθ gives
(drr − 6/r2)2F = −6/r5. Trying F(r) = rα gives four homogeneous solutions
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with α ∈ {−2, 0, 3, 5}, only two of which are bounded as r→∞, and α = −1
gives the inhomogeneous right hand side.

In (d) a few candidates commented that the fluid flows radially outwards
at the equator, as driven by inertia, and inwards again at the poles to satisfy
mass conservation.

B5.4: Waves and Compressible Flow

Q1 The bookwork on the derivation of the wave equation in part (a) was
very well done. The derivation of the normal models and natural fre-
quencies in part (b) was also well done, though the majority of candidates
contradicted themselves by not dealing correctly with the case of zero sep-
aration constant. While good progress was made by many on the analysis
of the waveguide in part (c), only a significantly minority applied correctly
the radiation condition in case (ii) to identify the waves that can propagate
when Ω is larger than the cut-off frequency ωm,n. In part (d) only a handful
of candidates superimposed correctly their solutions from part (c) to obtain
a series solution for the upgraded wave-maker. Overall this question was
found to be a touch on the harder side.

Q2 The derivation of the linearized problem in part (a) was very well done.
The derivation of the solution in part (b) was also very well done by the
majority of candidates — only a small minority failed to solve correctly
the transformed problem. Good progress was made by about half of the
candidates on the application of the method of stationary phase in part (c),
with the remainder struggling to differentiate correctly ω(k) or becoming
lost in the book keeping required to handle efficiently the two dominant
contributions. Overall this question was found to be on the easier side.

Q3 The bookwork in part (a) was well done on the whole, though a a
significant minority got lost in the algebra required to show that the flow
is homentropic. The piston withdrawal problem in part (b) was based on
a similar problem covered in both lectures and on a problem sheet. This
was reflected by there being many excellent solutions to part (b)(i) and
the derivation of the parametric solution for u and c underpinning part
(b)(ii), but then progress stalled for nearly all candidates. In part (b)(ii)
only a handful of candidates made progress on the manipulation of the
solution into the given form and and on the ensuing analysis on the loss of
positivity of the wavespeed c. There were, however, several excellent and
complete solutions to part (b)(iii). Overall this question was found to be
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on the harder side.

B5.5: Further Mathematical Biology

• Question 1 was a variant on standard theory for modelling chemotaxis-
driven pattern formation. Most candidates attempted this question
and answered parts (a) to (d) well, although not all were able correctly
to linearise the governing equations. Few candidates Attempted part
(e) and/or were able to sketch the region of parameter space in which
spatial patterning is predicted.

• Question 2 involved a combination of the Law of Mass Action and
travelling wave analysis. Like question 1, it was popular with the
candidates, most of whom scored well on parts (a), (b) and (c). In
part (d), many candidates struggled to reduce the system to a single
partial differential equation for u because they failed to recall the
conservation law derived in part (b). Attempts at part (e) were gen-
erally good, with students recognising that the PDE was a variant on
Fisher’s equation.

• Very few students attempted question 3 and those that did found it
challenging. Part (a) was done well and there were some reasonable
attempts at part (c). Despite exercises covering similar cases, the
students were unable to solve the diffusion equation in part (b), and
this hindered their ability to complete part (d).

B5.6: Nonlinear Systems

• Most students choose Q1 as it involved more direct calculations. Most
students answered easily Parts a and b (bookwork). Most students
managed to do well and showed good understanding of the under-
lying material. Similarly in Part c many students identified correctly
the period doubling bifurcation points and collected their results in
the bifurcation diagram. Part d required a broad understanding of
the material given in the lecturers. I was glad to see that some stu-
dents approached this part, though no one managed to provide the
complete analysis of the roots of the solution polynomial.

• Approximately half of the students chose Q2. Most of them derived
conditions determining the local stability and type of the two fixed
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points in Part a, though only a few students could plot correctly the
corresponding parameter curves in Part b. In part c, most students
transformed the system into the Hopf normal form provided in the
hint, but only a few of them could subsequently calculate correctly the
corresponding Lyapunov and d coefficients as calculations of these
are more technical. Few students forgot to shift the equilibrium to
the origin before applying the transformation into the normal form.
Nevertheless, I was glad to see that a few students provided the full
answer to Part c.

• Approximately half of the students chose Q3. Most students an-
swered easily Parts a and b (bookwork). Some students had prob-
lems with the calculation work in Parts c and d. Only a few students
calculated correctly νcr, despite the provided hint. Part d required a
deeper understanding of the material and I was glad to see that a few
students gave the right answer here.

B6.1: Numerical Solution of Differential Equations I

In general, the exam reflected the material taught in class. It comes as no
surprise that well prepared students manage to answer most of the exam
questions. Some students had difficulties in computing Taylor expansions
of vector valued functions in question 1. Fewer students attempted ques-
tion 2. Again, some of these had difficulties with multi-variable calculus.
Finally, most students’ solutions to question 3(d) lacked rigor.

B6.2: Numerical Solution of Differential Equations II

Question 1 The question had similarities with problems worked during
the exercise sessions but it was conceptually more demanding than the
other two questions.

Question 2 corresponded to a main theorem from the lecture notes whose
proof was only sketched in the lecture. Because of the structure of the
different parts, it was not difficult to grab some marks in each sub-part.

Question 3 was addressed by all candidates. Questions of this type have
been around in previous papers for several years and this was reflected in
the very good performance of the candidates, except on the bits that were
actually different from previous papers.
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B6.3: Integer Programming

The uptake of all three questions was fairly evenly distributed, though Q3
saw a slightly smaller uptake (Q1 was solved 15 times, Q2 16 times, and
Q3 10 times). The spread of marks within each question was also similar,
though Q2 seemed to have been marginally easier than the other two. The
overall raw marks saw a wide distribution, ranging from 11 to 48 (out of
50). Two minor typos were picked up during the exam and communicated
to all candidates. I don’t expect anyone to have been disadvantaged by
these typos, as they were obvious from the context.

Q1: Weaker candidates struggled with the book work parts a) & b) (alter-
native disjunctions, definition of LP dual and statement of the Strong LP
Duality Theorem, both drawn from the early parts of the course). Part c)
concerned the inversion of an argument we had seen in the course, which
required proving an “if and only if” statement. Some candidates got con-
fused and proved the “only if” part twice in two different ways. Part d)
drew on material from the later parts of the course (Lagrangian relaxation)
and applied it to LPs, which are a special case of IPs but presented an
unfamiliar feel.

Q2: This question contained quite a lot of book work of axiomatic flavour
on submodular functions and matroids. Part c) required making a (novel)
connection between this theory and a scheduling problem, which was well
solved by several students. Overall, the candidates seemed to have liked
this problem the best.

Q3: The bookwork section required explaining LP based branch-and-
bound, one of the earlier topics of the course. This was generally well
solved but many candidates left out important steps related to the propaga-
tion of bounds. Part b) was a novel but relatively easy test of understanding
of the branch-and-bound framework. Part c) related to the branch-and-cut
section of the course (one of the later parts of the course) and tested the
students on their understanding of the simplex algorithm and the gener-
ation of Chvatal-Gomoroy cuts. This is material that entered the course
under the changed syllabus. Some candidates ignored the instructions
and solved the IP via ad hoc inspection. No points were awarded for such
solutions, as the IP had been designed to be deliberately simple, so that the
candidates’ understanding of the cutting plane algorithm could be tested
without onerous calculations.
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B7.1: Classical Mechanics

1. Many candidates had difficulty identifying the number of degrees
of freedom correctly (three). Cartesian coordinates were not used
despite being the most efficient.

2. There were good solutions to the bookwork, but candidates found it
hard to reproduce the formula that was asked for.

3. This had fewer attempts being on the later material but attracted
some good strong solutions.

B7.2: Electromagnetism

Most students seemed to understand the main ideas and basic content
of the lecture course however there where many computational errors,
particular in the newer parts of the questions.

Q1: All students attempted this questions. There was some excellent work
however students where confused in part (b) about applying correctly the
boundary conditions and many marks where lost.

Q2: There were few attempts at this question and unfortunately a number
of computational errors where made.

Q3: All students attempted this question and it was the one which drew
the best answers.

B7.3 Further Quantum Theory

• Problem 1: Part (a) was bookwork and mostly well-answered, though
there were some errors here already. In part (b) the first two parts
were often answered well, though the nature of the ambiguities in
the definition of the Clebsch-Gordan coefficients was often not well-
explained (there is one phase ambiguity per irreducible representa-
tion appearing in the tensor product). Selection rules given in part (iii)
were frequently incomplete. Part (c) was novel in principle, though
most of it amounted to applying the rules for addition of angular
momentum. Giving the states of the spin-3/2 Hydrogen atom was a
problem in quite a few scripts, with the rules for decomposition of
tensor products from the previous parts not enforced correctly. There
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were similarly many errors in part (ii). Very few attempts in part (iii),
though when it was done it was done well.

• Problem 2: Part (a) was bookwork and was generally answered well,
though the implication of probability conservation was often not
well-justified. The second part was very similar to examples seen
previously, and was also answered correctly by many candidates.
Rather than derive the stationary wave function, a number of can-
didates had memorized a general formula from the lecture notes for
piece-wise linear potentials, though this led to occasional trouble with
reality conditions due to the relation E < V0. The extension to include
a WKB wave-function was either unanswered or caused problems on
almost all scripts. Many candidates treated the problem as either a
perturbation or as a bound-state problem, neither of which was rele-
vant to the case in question. By using the WKB approximation for the
wave function in the classically forbidden region, the result should
have been nearly identical to part (b) with a simple replacement in
the arguments of the hyperbolic trigonometric functions. In the case
of a smooth function one would need to use the connection formulae
at the end-points instead.

• Problem 3: Part (a) was bookwork and was almost uniformly an-
swered well, with some small issues arising in the explanation of
normalization assumptions. Part (b) required second-order pertur-
bation theory, and was most straightforwardly done using the alge-
braic formalism (some candidates proceeded in terms of explicit wave
functions, but this leads to integrals one would rather not do during
an exam). Comparing to the exact result required completing the
square in the perturbed Hamiltonian. Many candidates did not com-
plete the second part, though the relevant computations had often
already been done in part (i). Part (c) required first-order degenerate
perturbation theory, and was made much simpler by expanding the
perturbation in creation/annihilation operators and dropping terms
that vanish in the relevant matrix. Very few candidates successfully
carried out the calculation.

B8.1: Probability, Measure and Martingales

Question 1. This question outlined a different approach for constructing
product measures where Dynkin’s lemma for monotone classes plays a
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vital role. Almost all candidates attempted this question and answered
well about the book work part about Dynkin’s classes and the uniqueness
for finite measures. While a few candidates are unable to apply Dynkin’s
lemma for producing proofs of the measurability required.

Question 2. Many candidates attempted this question which outlines a
different version of the convergence theorem for martingales, and did well
for the book-work part and answered well by following steps by steps. A
few candidates used a wrong identity to show the domination in (b)(ii).

Question 3. About half of candidates attempted this question, and a few
of them failed to answer part (a) in satisfactory way which requires the use
of the Fubini’s theorem twice. Most of candidates were able to construct a
proof of Doob’s maximal inequality for martingales, though not necessary
used the approached suggested in the question. A few candidate failed to
choose a proper increasing function to prove the inequality in part (c).

B8.2: Continuous Martingales and Stochastic Calculus

Question 1 was generally well answered. In part b, the importance of
stating that the three statements of the convergence theorem are equivalent
was sometimes missed. In part c, which is a proof from the lectures,
students lost marks by forgetting to justify their convergences, which need
a combination of monotone/dominated convergence (depending on the
strategy taken), Fatou’s inequality to show E[M2

t ] ≤ lim infn→∞E[M2
t∧Rn

]
(where Rn is some localizing sequence), and Doob’s L2 inequality to move
a supremum through an expectation. In part d, students struggled with
the fact that A is only F∞-measurable, in particular, {1AMt}t≥0 is not a
martingale, and you cannot simply work with ω ∈ A and assume that you
have the bounds in expectation from part c. Some students failed to show
that as n → ∞ we have Mt∧Sn → Mt for ω ∈ A, which follows from the
definition of A. Some students also proved that t 7→ M2

t converges on A,
but then did not sufficiently justify that this implies M converges because
M has continuous paths and x 7→ x2 has a discrete preimage.

Question 2 was also well answered. In part a, some students were not
sufficiently clear where they had assumed properties of the normal dis-
tribution (in particular the mgf/characteristic function). In part bi, many
students forgot to state that M must have right-continuous paths, which is
needed in the theorem. In bii, some students gave examples where τ = ∞,
but did not show that the martingale they proposed converged, so Xτ was
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simply not defined. Part c was generally well done, but ciii caused some
difficulties, as students often pulled the stopping time out of the expec-
tation, rather than treating it as a random variable. Some students also
applied the optional stopping theorem to B, rather than X, which does not
yield the desired result.

Question 3 was also well answered. In part b, very few students noticed
that the submartingale should be assumed to be at least right-continuous
(otherwise Yτ may not be well defined, and the optional stopping theorem
does not hold). Part di was well answered, by applying Itô’s lemma to
the processes, but students often did not justify why the stochastic integral
terms had expectation zero (as they are true martingales, as f is assumed
to have bounded derivatives), and tried to argue for the independence of
increments of f (X), which does not hold. Part dii was less well answered.
Some students tried to apply optional stopping with the stopping times
τ1 = inf{t : Xt ∈ A}, where A = {x : ∇2 f < 0}, and τ2 = inf{t > τ1 : Xt < A}.
(Instead setting τ1 to be a stopping time when ∇2 f < −ε gives a successful
proof.) This causes difficulty as it’s then the case that τ1 = τ2, which leads
to difficulty in proving the result. Some students argued that we could
‘start our process inside A’, which requires slightly different assumptions
to those given.

B8.3: Mathematical Models of Financial Derivatives

Most students attempted the first question and students did reasonably
well.

Most students got Parts (a) and (c) out. For students who made a reasonable
attempt at this question, most marks were lost for:

• stochastic variables suddenly turning into real variables, without
explanation;

• for not knowing the difference between the cost of hedging a portfolio
as opposed to its current market value;

• not getting Part (d) out completely.

Some students put in quite a lot of information which was irrelevant to
answering the question.

a question.
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A great number of students attempted the second question. Almost all got
Part (a) out (it was basically book work) and most managed to get Part
(c) out (again this was book work). Many got most of Part (b) out, and
some got Part (d) out. There was evidence that some students had run
out of time by the end of this question and some solutions were somewhat
rushed towards the end.

Fewer students attempted Question 3, and many of those were rushed
attempts. I suspect this question was almost always done as the final
attempt at a question. In general, students who did this question either
did very well in the other question or quite badly at the other question.

B8.4: Information Theory

Question 1 was the most popular with nearly all candidates attempting
it. Question 2 and Question 3 were approximately equally popular. For
all three questions most candidates managed to get all points for part
a) though a common reason for point detection was to ignore the case
when the probability mass function puts mass zero on a point (e.g. in the
definition of divergence or entropy). Most candidates made progress on
Question 1b) though fewer managed to calculate capacities in 1c). Sim-
ilarly, most got all points for 2b) though very few candidates made any
progress on 2c), although some “guessed” the correct function without
giving a rigorous derivation.

For 3b), few candidates realized that adding a “dummy” letter to the two-
letter alphabet made the proof of 3bi and 3biii much easier; most candidates
however, manage to write down an example that was asked for in 3bii. For
3c) few candidates made any progress, although some made successful
first steps.

B8.5: Graph Theory

The first two parts of question 1 were mostly well done, though for (a) I was
looking for some indication why deleting an edge can only create one extra
component (e.g., adding an edge can only join the components it touches)
since otherwise the solution is just to assert the statement in the question!
In (b)(i) the intention was to use (a), but using standard properties of trees
was allowed. In (b)(ii) surprisingly many candidates recalculated for the
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minimum, rather than using c ≥ n − m to deduce m ≥ n − c. (c) was less
well done. For maximum values, some candidates said that if κ(G) = 2
then there must be a vertex of degree 2, which is not true. Simply use that
there is a separating set of size 2 (and for a short answer, apply (b) to the
rest of the graph). The hard part is the lower bound in (ii), which requires
showing the existence of a 3-connected graph which is (almost for n odd)
3-regular.

Question 2 was least popular. Most of (a) and (b) is bookwork and was
reasonably well done, though there were quite a few incorrect proofs of
the theorem. In the last part of (a) it’s enough to show t2(n) − t2(n − 1)
is increasing; this difference is just δ(T2(n)). For (c), there were a number
of reasonable solutions to (i), but very few for (ii). The key idea is to
(correctly) deduce how a triangle in G can be connected to the rest of the
graph if there is no copy of H2.

Question 3 was popular but proved difficult (generating a good spread of
marks), and not always where I expected. A number of people had trouble
with (b) (the idea is to note that there for T ⊂ V2 there are no edges from
V1 \Γ(T) to T, and apply Hall’s condition to the former set. In other words,
the relevant property of the neighbourhood of a set is that there are no
edges going outside it). (b)(i) was mostly OK (just apply Hall’s condition
each way to the two sets); very few managed (ii) (the key is that an odd
component has more vertices on one side of the partition than the other).
(d), which I expected to be hard, was often well done, especially the first
part. For (i) one can construct an example thinking about Tutte’s Theorem,
or just spot that e.g., Kk,k+2 works.

BO1.1: History of Mathematics

Both the extended coursework essays and the exam scripts were blind
double-marked. The marks for essays and exam were reconciled sepa-
rately. The two carry equal weight when determining a candidate’s final
mark. The first half of the exam paper (Section A) consists of six extracts
from historical mathematical texts, from which candidates must choose
two on which to comment; the second half (Section B) gives candidates a
choice of three essay topics, from which they must choose one. The Sec-
tion B essay accounts for 50% of the overall exam mark; the answers to
each of the Section A questions count for 25%.

Within Section A of the paper, no candidates attempted question 5 (Grass-
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mann’s ‘extensive quantities’ — a topic dealt with only briefly during the
lecture course). At the other extreme, every candidate attempted question 4
(Euler’s definition of integration), probably because this is a topic that was
at the core of the lecture course. A common pitfall here, however, was
a failure to comment on the fact that this was a definition of integration
purely as anti-differentiation, in contrast to the area-based definitions that
came before and after. Questions 1–3 were each attempted by two candi-
dates, with only one candidate attempting question 6. Questions 2, 3 and 6
were fairly standard questions, whose associated topics were covered in
some detail in the lecture course; question 1 was a little harder, having only
been touched upon briefly in lectures.

Certain of the answers, particularly those to question 2, would have ben-
efited from the inclusion of a diagram. Where candidates arranged their
answers under the headings ‘context’, ‘content’ and ‘significance’, material
was sometimes misplaced. This was particularly noticeable in some cases
for ‘content’, where candidates included rather more information than was
actually present in the extract — these details should have appeared under
‘significance’ or been omitted entirely. Another common problem was that
under exam conditions some candidates forgot a point that was repeatedly
stressed throughout the course: that we do not take ‘significance’ merely
to mean ‘importance’, but in a broader sense of assessing where the extract
in question sits within the wider development of mathematics.

This year’s topic for the extended coursework essay was the late-eighteenth-
and early-nineteenth-century (British) debate surrounding the validity of
negative and complex numbers, with a focus on the writings of William
Frend, George Peacock, and Augustus De Morgan. The submitted essays
displayed great variety, both in choice of essay title, and in quality. The
better essays were those that did not simply regurgitate the content of
class discussions, and that displayed evidence of reading beyond those
texts that had been set.

BEE, BSP and BOE essays and projects

Mark reconciliation was handled for essays and projects as part of the
same exercise. Some assessors/supervisors did not make the deadline
for submitting marks so the procedure was handled on a rolling basis
once initial suggested marks were received, but overall the process went
smoothly.
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If the proposed marks were sufficiently close, as set out in the guidelines,
then the supervisor and assessor were informed that the automatic rec-
onciliation procedure would be applied unless they indicated that they
wished to discuss the mark further. If the proposed marks differed suf-
ficiently from each other, then the supervisor and assessor were asked to
confer in order to agree a mark.

BN1.1: Mathematics Education

The assessment of the course is based on:

• Assignment 1 (Annotated account of a mathematical exploration)
35%

• Assignment 2 (Exploring issues in mathematics education) 35%

• Presentation (On an issue arising from the course) 30%

Each component was double-marked, with Dr Jenni Ingram plus myself,
Dr Nick Andrews, as assessors. As recorded in the table below, each
component was awarded a USM (agreed between assessors for double-
marked components), and then an overall USM was allocated according
to the weightings above. Where a significant difference between marks
awarded by the two assessors arose or marks were across a grade boundary
(these are underlined in the table), scripts was discussed in more detail
before agreeing a mark.

As last year there were 12 students on the course this year and all but one
went on to study for the BN1.2 (Undergraduate Ambassador Scheme) in
Hilary Term.

BN1.2: Undergraduate Ambassadors Scheme

The assessment of the course is based on:

• A Journal of Activities (20%)

• The End of Course Report, Calculus Questionnaire and write-up
(35%)

• A Presentation (and associated analysis) (30%)
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• A Teacher Report (15%)

The Course Report and Journal were double-marked, with Dr Gabriel
Stylianides and myself, Dr Nick Andrews, as assessors. I was sole assessor
for the Presentations and the host school teacher provided grades for the
Teacher Report.

There were 11 students on the course this year and all had previously
studied for the BN1.1 course in Mathematics Education in Michaelmas
Term. All students engaged well with the practical aspects of the course,
demonstrating an ambassadorial role in schools, leading to good marks in
these areas.

Statistics Options

Reports of the following courses may be found in the Mathematics &
Statistics Examiners’ Report.

SB1.1/1.2: Applied and Computational Statistics

SB2.1: Foundations of Statistical Inference

SB2.2: Statistical Machine Learning

SB3.1: Applied Probability

SB3.2: Statistical Lifetime Models

SB4: Actuarial Science

Computer Science Options

Reports on the following courses may be found in the Mathematics &
Computer Science Examiners’ Reports.

CS3a: Lambda Calculus & Types

CS4b: Computational Complexity

Philosophy Options

The report on the following courses may be found in the Philosophy Ex-
aminers’ Report.
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102: Knowledge and Reality

127: Philosophical Logic

129: Early Modern Philosophy
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